If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16=j^2
We move all terms to the left:
16-(j^2)=0
We add all the numbers together, and all the variables
-1j^2+16=0
a = -1; b = 0; c = +16;
Δ = b2-4ac
Δ = 02-4·(-1)·16
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8}{2*-1}=\frac{-8}{-2} =+4 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8}{2*-1}=\frac{8}{-2} =-4 $
| (4x+9)(3x+14)=180 | | c-2c+9=-21 | | x+0.06x=45 | | 2x+25+3x=-6+x+11 | | -250+35x=-100+25x | | 3/4x+2/3=5/6x-1/2 | | 9=q^2 | | 8-5(-6+4k)=-102 | | 2x+25+3x-6=x+11 | | 15x+58=12x+41 | | Y=4c+2 | | x=19=38 | | w-12=27 | | 6(y-2)=4+2(2y+5) | | 2x+2=2(x+1) | | 4(x-6)-5(x+2)=3(x-8)-18 | | 8(x–1)=5x–35; | | 2x+15=4x+6 | | 28-4d=34 | | 121=g^2 | | 15(–x–1)–2(x+4)=4(5x–1)–(x+1) | | 10u-7=53 | | x-32=-60 | | 2x+25=3x-6+x+11 | | -2(x-5)=6(x+7) | | 7.6x+4.1=6.8x+4.9 | | -8c+24=-8 | | −2+a=15 | | -3n+1-3-n=22 | | 2x+3+7=2x-10 | | r/5+39=48 | | –y=18.7 |